主页 > 培训机构 > >>  正文

深度学习“见顶”不等于AI寒冬

2019-01-26 10:22 来源:互联网综合 编辑:WBYUN

深度学习“见顶”不等于AI寒冬

  尽管新的算法模型在推动AI向前发展,但并不意味着它们的前景可以预见,也不意味着深度学习“不可救药”。

  记者 赵广立 贡晓丽

  在当前的第三次人工智能(AI)浪潮之中,深度学习算法被认为是迄今为止“最为重大的AI革命”。此说法或许有所夸大,但深度学习对这一轮AI的大爆发而言的确功不可没。然而,最近以来,关于深度学习算法是否已经“见顶”“触底”的讨论逐渐增多,“AI或将再度进入寒冬”的说法也一度甚嚣尘上。果真如此吗?

  《中国科学报》记者通过检索和采访了解到,类似上述说法可前溯至2018年6月初,多家行业媒体在移动互联网平台上转发了作者信息显示为“Koh Young Technology 公司首席AI 科学家Filip Piekniewski”的文章《AI的寒冬将来临》。该文从深度学习“声势已大幅减弱”“不具有扩展性”“自动驾驶事故不断”三个角度得出结论:“深度学习将大幅降温”“预测AI的冬天就像预测股市崩盘——不可能准确地预测何时发生,但几乎可以肯定的是,它会在某个时点发生。”

  最近讨论“深度学习是否触底”的文章,则来自于一家名为“Towards Data Science”的媒体平台。1月中旬,一篇作者署名为Thomas Nield、题目被译作“历史总是在重演,AI寒冬或再来”的文章再提“AI寒冬”,论据再次指向“深度学习的天花板”。在此文中,作者认为“我们的确需要降低期望并停止宣传‘深度学习’的能力了。否则,我们可能会发现自己陷入另一个AI 寒冬”。

  被推向神坛的深度学习,怎么突然“生”出这么多缺陷?

  深度学习确有先天缺陷

  相比盲目甩锅“自动驾驶事故不断”,人工智能科学家、地平线创始人兼首席执行官余凯在指出深度学习在自动驾驶领域的局限之前,首先肯定其贡献,“深度学习对于自动驾驶的作用,行业内已一目了然”。

  “现在业内强调的是,深度学习已不是唯一。”余凯在接受《中国科学报》采访时表示,在自动驾驶领域,深度学习的局限在于,仅在感知方面发挥作用,而对于异常情况处理等方面的应用效果并不理想。

  不仅是自动驾驶,在近两年大热的“AI+医疗”领域,深度学习算法也遭遇了难以再进一步的困境。

  “现在深度学习解决临床问题的基本思路,没有太大突破。”科大讯飞医疗信息技术有限公司总经理陶晓东告诉《中国科学报》,这波人工智能过度依赖数据,忽略了很多数据之外的信息,“在医疗领域尤其如此”。

  “许多医学理论,比如基本的解剖信息都没有用在深度学习的框架里。”陶晓东认为,这导致AI不能在数据不完全的情况下从更多维度逼近真相,“你不可能有像ImageNet那样地训练数据”。区别于上述行业应用中的问题,南京大学计算机科学与技术系主任、人工智能学院院长周志华认为从学术理论本身出发,深度学习(或深度神经网络)有其固有缺陷。

  “神经网络有很多缺陷。”周志华在2018年的一次主题为“关于深度学习一点思考”的分享中明确提到,“凡是用过深度神经网络的人都知道,要花大量的精力来调参数,因为这是一个巨大的系统。这会带来很多问题,首先调参数时,经验是很难共享的;这带来第二个问题——不管是科学研究、技术发展,都希望结果可重复,而在整个机器学习领域里面,深度学习的可重复性是最弱的。”

  他举例说,经常会遇到这样的情况:有一组研究人员报告了一个结果,但其他的研究人员很难重复——哪怕用同样的数据、同样的方法。

  可以不必是深度学习

  深度学习能够成功,对以下三个先决条件的满足不可忽视:更多的数据、更强力的计算设备以及很多有效的训练技巧——这帮助人们利用高复杂度的模型,深度神经网络恰恰就是一种便于实现的、高复杂度的模型。

  周志华解释说,这背后的逻辑是,当选择使用一个深度模型的时候,得到的结果容易“过拟合”,因此就要使用足够大的数据来训练模型,使其得到的“规律”符合一般规律;而这不但需要训练技巧,还要考虑到如此做会导致系统计算开销非常大,因此要有强有力的计算设备,如GPU等。

  “深度神经网络最本质的东西到底是什么?答案可能是表示学习的能力,这是真正重要的。”周志华认为,有了深度学习之后,人们不再需要手工设计特征,把数据从一端扔进去、另外一端出来,中间所有的特征完全通过“学习”来解决,就是所谓的特征学习或表示学习,“这和以往的机器学习技术相比是一个很大的进步,我们不再完全依赖人类专家去设计特征了”。

热门搜索