主页 > 高考 > >>  正文

2019年成人高考数学(理)复习难点剖析(2)

2019-01-17 11:38 来源:互联网综合 编辑:WBYUN

【摘要】预习的目的就是强化记忆基础概念,这很有必要的。对于难点更是要多加复习!《2019年成人高考数学(理)复习难点剖析(2)》如下:

2019年成人高考数学(理)复习难点四:三个“二次”及关系

三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具。高考试题中近一半的试题与这三个“二次”问题有关。本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法。

4、难点磁场

已知对于x的所有实数值,二次函数f(x)=x2-4ax+2a+12(a∈R)的值都是非负的,求关于x的方程 =|a-1|+2的根的取值范围。

2019年成人高考数学(理)复习难点五:求解函数解析式

求解函数解析式是高考重点考查内容之一,需引起重视。本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力。

5、难点磁场

已知f(2-cosx)=cos2x+cosx,求f(x-1)。

案例探究

[例1](1)已知函数f(x)满足f(logax)= (其中a>0,a≠1,x>0),求f(x)的表达式。

(2)已知二次函数f(x)=ax2+bx+c满足|f(1)|=|f(-1)|=|f(0)|=1,求?f(x)的表达式。

2019年成人高考数学(理)复习难点六:函数值域及求法

函数的值域及其求法是近几年高考考查的重点内容之一。本节主要帮助考生灵活掌握求值域的各种方法,并会用函数的值域解决实际应用问题。

6、难点磁场

设m是实数,记M={m|m>1},f(x)=log3(x2-4mx+4m2+m)。

(1)证明:当m∈M时,f(x)对所有实数都有意义;反之,若f(x)对所有实数x都有意义,则m∈M。

(2)当m∈M时,求函数f(x)的最小值。

(3)求证:对每个m∈M,函数f(x)的最小值都不小于1。

热门搜索